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FINITE ELEMENT
STRESS ANALYSIS OF POLYMERS

AT HIGH STRAINS

by Michel Durand and Etienne Jankovich

KLEBER COLOMBES, Theoretical Tire Engineering,
COLOMBES, France

SUMM*RY

A numerical analysis is presented fur the problem of a flat rectangular
rubber membrane with a circular rigid inclusion undergoing high strains due
to the actinn of an axial 1load. The neo-hookean constitutive equation~ are in-
troduced into the general purpose TITUS program by means of equivalent nookean
constants and initial strains. The convergence is achieved after a fuw itera-
tions. Yhe method is not limited to any specific progrem. The results are in
good agreemant with those of a Company sponsored photoelastic stress anclysis
The theoretical and experimental deformed shapes also agree very closely with
one another. For high strains it is dsmonstrated that using the conventionasl
HOOKE law the stress concentration factor ottained is unreliable in the case
of rubberlike mataerial,

INTRODUCTION

The structure of & radial motor vehicle tire is made up of two types of
components namely the reinforcing cords and the rubber. The most immediate
problem 1. tire 3tress analysis is that of the large displacements in the in-
flateu tire descrived in a previous paper (Referunce 1). It appears that the
mora important components are the reinforcing cords allowing the tire to take
a stable inflated shape. This particulsr problem can row be considered sas
solved.

However, in order to sclve the complete problem, the rubber’s behavior
must slsn be adequatly analyzed Ly means of an as econcmical as possible modi-
fication of exiztiing programs. Up until now, this vaery challenging problem of
non linear material behavir and incompressibility has only been solved in a
few special cases (Reference 2).

The aim of the present work is to sirass analyze the rubber parts of the tire
by using NASTRAN and TITUS. A test specimen encompassing a rigid inclusion is
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caleulated in uniaxial oxtension and the results are compared with Lthose of

pholovlasticily., The nxperimentol evidence shows tho limits of validity of
Lthese methods now available to the designer.
SYMBOLS

{k] Stiffness matrix, Nm

(B. Matrix relating strain to nodal displacements, mm/mm

A Surface of the membrane element, m<

(D) Constitutive law in matrix form, Nm~2

G Stress, Nm~2

€ Strain, mm/mm

€, Initial strain, mm/mm

v POISSON's ratioc, (no units)

W Clastic potential per unit volume of the unstrained body, Nm—2

Cq and C2 Constants of MOONEY, Nm-2

I3 Strain invariants, i = 1,2 and 3, (no units)

(E) Neo-hookean constitutive law of a membrane in matrix form, Nm™2

qg, Initial hydrostatic stress of a rubber membrane, Nm-2

u Displacement, m ,
0y ard T Principal stresses in the middle plane of the membrane, Nm~2
e Radius of curvature of the transverse isostatic, m

S Curvilinear abscissa, m r
qg, Normal stress tangent to the edge of the disc, Nm™2

C Photomlastic iaterial constant, N~ 1ml

a Radius of the disc, m

Subscripts:

T transposed

t true

¥ coordinate perpendicular tn the loal axis centered (n the middle of

the inclusion :
y coordinate along the load axis centered in the middle of the inclu-
sion
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GENERAL APPROACH
HOOKE'S LAW
The elementary tests carried out show that for the material under consi-
deration HOOKE's law applies in relating true stress & to strain even in the
35 % mm/mm range. Thus, it may be assumed tentatively that the non linearity
of the rubber's constitutive law is only the result of the large displacements
experienced by the rubber.
Stiffness matrix
The stiffness matrix of the membrane plate element used can be written
(Reference 3)
(k) = (B x (D) x (B x A x d
d Thickness, m
A Surface of the membrane element, ml
(8) Matrix relating strain to displacement, mm/mm
(D) Constitutive law, Nm=2
As a result of the incompressibility condition A d = const. The accuracy
of the forces and the displacements depends on the accuracy of the terms B and
D.
Definition of D _é
&) |
1 x ",
g} = [D] €y b - zE'o N
f.,y ,
Experimentally the uniaxial law is =%
J'li»;r;-e,
O't = Eg where E is YOUNG's modulus i;
As a result ¢ must be replaced by O't in the equations, The only remain- +
ing term that has to be calculated in the course of the extension of the spe- P
cimen is B. Thus, this problem would seem to be identical to that of the large »
displacement problem.
» The true stress is computed per unit section area of the deformed body
whereas the conventional stress is computed per unit section arees cf thg
undeformed body.
.
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In the case of rubber, however, it is well known that there is an addi-
tional, pressure type, term “p" in the constitutive equation. To eliminate
"p", renrnscnied by - (D) {€,. above, an additional equation in terms of dis-
placements must be written for each element. NASTRAN with its scalar slement
can handle such an equation. The resulting data input problem is however very
cumbersome. Thus, this solution may be uneconomical for every day use.

In order to demonsirate the existence of "p" a large displacement calcu-
lation was carried out with &€,= 0 and Y= .5. The largest transverse dis-
placement alang the x-axis passing through the middle of the inclusion was
13 % in error relative to the experimental values. This error was much larger
than the one obtained by means of the theary developed below.

MOONLY-RIVLIN CONSTITUTIVE LAW

The most common type of rubber material behavior equation is that of
Mooney-Rivlin (Reference 4). Considering that W is the elastic potentiil mea-
sured per unit volume of the unstrained body the postulated function is

= n - 1 -
W=, (11 . G (12 3)

Ii are the strain invariants (i = 1,2)

C,. C, are the constants postulated by Mooney.

1!

The theory of plane stress of very thin membranes applics to the rubber
specimen considered here. The deformations are symmetric about the middle
plane of the body and are essentially uniform throughuut thc thickness. The
pressure type component "p" is eliminated because in the present problem the
normal stress perpendicular to the specimen's surface is zero. Large displace-
ment equations are used in the B matrix.

The equations obtained are: {0} = {(E) {&} + {0}

0 are defined at points in the deformed body, but are measured per unit

area of the undeformed body.
The £ and ¢, are functions of not only C, and C2 but also of Exxs Eyy and Ey.
The matrix € is positive definite in the strain range considered.

In uniaxial extension the above egquations in terms of true stresses must be
identical to the well known equation (Reference 5) :

al -2 (C +C—‘) ()\ --';»-\ L where ¥ = .5
t 1 " A- 1 -yp?
4 "j bV
and A"= b+ 611
This happens only if C; is zero and the de” -mations are limited in size. Surh

a material is called nec-hookean. The constant C4 is determined by means of
the latter equations in an uniaxial elemuntary extensior test. C1-.71 MN m™<,
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The solution of the equations is carried out by using an equivalent se-
cant modulus method. The full load is applied in this trial and error approach.
The first solution is obtained by the hookean constitutive low where g is set
al. 7oru.

NASTRAN AND TITUS ANALYSIS

The program of J.T.0den, OK1, (Reference €), is designed for analyzing
rubberlike material. Thus it came under considsration first, but it can only
analyze plane strain plates whereas our problem is a plane stress problem # .

The solutions obtained by the TITUS and NASTRAN programs have been compa-
red at the first iteration. TITUS uses isocparametric quadrilateral membrane
elements while NASTRAN has constant stress CQDMEM elements. The stizsses differ
only by 2 %. Howsver the difference between the displacements of : ASTRAN as
compared to those of TITUS was 4 %. The results of NASTRAN were much further
away from the experimental ones than those of TITUS. In this particular case
the CPU computation time was 50 s for TITUS and 84 s for NASTRAN using UNIVAC
1108 (EXEC 8).

MODIFICATION OF TITUS

The TITUS program was developed in France by CITRA now called SPIEBATI-
GNOLLES Inc. Because of the proximity of the development team it was easy to
modify the program. By means of a minor modification it is possible to calcu-
late the modulus E and G, internally elementwise at each iteration with the
help of C4 and the strains.

The test of convergence was carried out by comparing the arithmetic mean
of the displacements cbtained at esach iteration. At lower loads (9.8 - 13.6 N)
the convergence was achieved after about six itaretions whereas at 29.4 N ten
iterations were needed. In the first case the computation time was 84 s CPU
on UNIVAC 1108 (Exec 8).

MODELING OF THE PLATE

The finite wlewment idsalizaticn of the membrane encompasses 107 nodal
points and 84 quadrilateral elements. In order that the theoretical solution
and expserimental results could be satisfactorily compared, the three loading

% In linear slasticity plane strain and plane stress problems are conjugate.
This is not the case, however, for rubbarlike materials.
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conditions were given in terms uf displacements at the end of the specimen.
ihe modeling of the membrane is shown in Fig. 1.

Boundary condftions

Case 1 Case 2 Case 3
Upper line Uy = 3.45 mm Uy = 6.613 mm uy = 11.79 mm
ux = 0 ux = 0 ux = 0
Around inclusion u =20 u =20 u =10
y y y
u =0 u =0 u =20
X X
Along Y-Axis u =20 u =0 u =0
X X X
Along X-Axis u =0 u =10 u =0
y Y y

Since the loading and the deformations are assumed to be symmetrical, only
one-quarter of the plate needed to be considered.

EXPERIMENTAL WORK

TEST SPECIMEN

The model test specimen is a rectangular coupon cut out of a polyurethane
plate furnished by PHOTOLASTIC iInc. The coupon is tran r-rent and isotropic e
when not loaded. A circular hole is cut out of its centes and is fillasc 'n
with araldite which is reinforced with glass beads at & ratio of 100 . Tne
stresses due to tha contraction of the disc during polymerisation have bean
observed by means of crossed polarisors and have been eliminatzd by an applicd
compression load in order to keep the neutral state of stress in the specime:.
The disc is much stiffer than the rest uf the coupon and there is perfect ad-
hesion between them. The grips are glued on to the ends of the rectangle. The
only load applied is a vertical load along the speciman’s axis and it is mea-
sured by means of strain gages. Viscoelastic gffects ars suppressed by load-
ing up gradually.

The dimensions of the specimen are 117 mm x 42 mm x 1.02 mm and the dia-
meter of the disc is 14 mm.
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Using a transmisslon polariscope, the isoclines are determined with the
help of in-plane polariced white light and the 1sochgomes with the help of mo-
nochromatic circularly polarized light (DNa = 5690 A).

The isostatics are obtained from the isoclines using graphical means.

PHOTOELASTIC STRESS ANALYSIS

In rubber the lightwave path difference is proportional to the difference
. of the principal stresses 09 - U, and also proportional to the instantaneous
. thickness of the specimen (Reference 7)

$5 =Ce (CI1 - CE]

b, The material constant C is determined by a uniaxial elementary tension test.
¥ The value obtained is

C = 3.21 + 0.03 m2 daN~"1

The principal stresses along the vartical and horizontal symmetry axes are de-
termined by integrating graphically the equation of Lamé& and Maxwell (Refersnce
8)

g, -0, Ja;
0-‘ - Gl 30’, - o
eq_ * Esl e

f5} where p is the radius of curvature of the transverse isostatic and s 1s the
IR curvilinear abscissa at a given point. The subscripts 1 and 2 refer tc the
% two familiss of isostatics.

The starting point of the integration along the x-axis is taken at the

mf{; edge of the specimen where the stress 0, is zero.

For the integration along the vertical axis the poin of reference for the

*”ﬁ; integration is tekern in the region of uniform streas betwe.n the grips and the

disc where 02 is zero. Along the edge of the disc the stresses 04 and Q'; are
obtained using ths normal stress T, tangent to the disc and they vary as fol-
lows:

3 G, 30-,'
2 i L
and g =09 +(0-09) sin?q i

'f where o is the sngle between the direction of @ and the isostatic O 4. "

The value of Ty 1is a function of the accuracy nf the measurement of the

B isoclines. As the experimental determination of the iatter is relatively inaccu-

rate, in particular at the top of the disc, the accumulated errors mesy be quite
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ing from the horizontal axis, the values of a9

large. For this reason, start
% greater than the ones obtained starting form the

and o, at the top are 1%
other axis.

DISCUSSION OF THE EXPERIMENTAL AND THEORETICAL RESULTS

DEFORMED SHAPE

oy

The theoretical and experimental results obtained for the defurmed shape
are in excellent agreement as shown (Figs., 2-4). By different experimental me-
thods the overall transverse displacements at the horizortzl symmetry line have

been determined as follows:

LOADING EXPERIMENT TITUS
Uy Uy
(mm) (mm)

B % - 0.4 + 0.05 - 0.434
1.5 % - 0.75 + 0.05 - 0.806
20.5 % - 1.4 + 0.05 - 1.44

ISOSTATICS

The theoretical and experimental results showing the distribution of the
isostatics over the surface of the rubber coupon are plotted in Fig.5. On the
left side are shown the calculated principal stresses and on the right side
the envelopes of the co~responding experimental principal stresses. Taking into
account the fact that the theoretical results ore relative to the undeformed
surface of the specimen, the agreement is again excellent. The following table
shows the values of the applied longitudinal force.

LOADING EXPERIMENT TITUS
Force Force
(N) (N)
6 % 8.8 + 0.2 10.6
11.5 % 19.8 + 0.4 18.4
20.5 % 29.4 + 0.6 28.2 ’

The mesh used in modeling the ends of the specimen was very coarse, the prin-
cipal aim being to demonstrate the behavior of an inclusion imbedded in a rubbe
matrix. Thus, the error obtained is accordingly larger in this region.
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ISOCHROMES

The oxpurimental stress dlstribution over tho surtace of the spocbnens
has been established by meoans of the isochromes. No quantitative comporison 1o
shown herc as the numerical results are relative to tho undeformed shape and
are in terms of the conwventional stresses, (Fig. 6-8). The autcomatic plotting
of the required true stress isochromes is being developed at the present time.

However, the shape of the isochromes shown agrees qualitatively with the
experimental ones. As demonstrated below the numerically obtained longitudinal
true stress concentration factor is very accurate. Thus it can be conjectured
that the agreement must be also gquantitative.

PRINCIPAL MEMBRANE STRESSES

In Fig. 9 the true principal membrane stresses together with the experi-
mental ones are shown. The shape of the two families of curves obtained are
identical. However there is a vertical shift of the theoretical ones relative
to the experimental ones. The difference is quite small and remains within the
limits of the accuracy of the experiment. It must be noted that at the top of
the inclusion, on the y-axis, the experimental results differ according to
whether the point is approached from the right or the left. The mean of the
two values is located very near to the theoretical point.

At the interssction of the x-axis with the contour of the inclusion two
nearly identical compression stresses are obtained experimentally. This re-
sult agrees with those obtained by theoretical consideration in reference 9.
The numerical calculation gives two stresses of oppcsite sign, however. This
is explained by the fact that the stresses are calculated at the center of
gravity of the elsment. In this region C of Fig. 10, the stress gradient is
very large. Thus, even though the 0'1 stress is positive at —-— 1.07, the cal-
culation point, it is negative at—- = 1. that is at the experimental recording
point. Taking these facts into account the agrsement between the finite ele-
ment results and those of the experiment is very good.

STRESS CONCENTRATION FACTOR

Ihe stress cuncentration of the longitudinal principal stress along the
y-axis is plotted in Fig. 10. The maximum stress concentration factors are

Experiment 1.28
Finite element results 1.39
Linear classical elasticity 1.54

The agreement between the experiment and the numerical results is excel-
lent. It can be concluded further that the linrar elasticity gives unreliable
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stress values in the case of rubber for strains reaching 18 % or more.

CONCLUSION

The close agreement obtained between theoretical and experimental results
demonstrates the validity of the large displacement equations, and of the neo-
hookean constitutive law used in the modified TITUS program. However, the use
of the derived method is not limited to any specific program. After some minor
modifications any geometricually nonlinear finilte elemunt program may ba ap-
plied to the analysis of rubber at relatively high strain.

The importance of using the proposed theory instead of the conventional
HOOKE typs formulation to design rubber parts is made evident by the fact
that, using the conventional theory, the stress concentration factor of the in-
clusion obtained has an srror of about 20 %.
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Figure 2. ~ Finite Element Solution and Experimental Deformed Shape
Load = 19.6 Newtons.
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on the Undefurmed Shape
(TITUS)

Figure 5. - Conventional Principal Stresses and Experimental Isostatics.

Load = 19.6 Newtons.
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TITUS Solution Expariment
Difference of the Isochromes - Difference of the
Conventional Principal True Principal
Membrane Stresses Membrane Stresses
in the Undeformed Body in the Deformed Body

Figure 6. - Isochromes - Numerical Results and Expsriment.
Load = 5,81 Newtlons.
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TITUS Solution Expsriment
Oiffersnce of the Isochromes - Difference of the

Convantional Principal True Principal
Memorane Stresses Membrans Strasses
in the Undeformad Body in the Deformed Body

Figure 7. - Isochromes - Numerical Results ang Experiment.
Load = 19,6 Newtons.
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TITUS 3olution Experiment
Biffasrencs of the Isochromecs - Differerces of the
Conventional Principal True Principal
Membrane Stresses Mambrane Stresses

in tha Undeformed Body in the Deformed Body

Figure 8. - Isochromes - Numerical Results and Experiment.
Load = 28,4 Naewtons.
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